303 research outputs found

    All fiber polarization insensitive detection for spectrometer based optical coherence tomography using optical switch

    No full text
    Polarization dependent image artifacts are common in optical coherence tomography imaging. Polarization insensitive detection scheme for swept source based optical coherence tomography systems is well established but is yet to be demonstrated for all fiber spectrometer-based Fourier domain optical coherence tomography systems. In this work, we present an all fiber polarization insensitive detection scheme for spectrometer based optical coherence tomography systems. Images from chicken breast muscle tissue were acquired to demonstrate the effectiveness of this scheme for the conventional Fourier domain optical coherence tomography system

    Defocus test and defocus correction in full-field optical coherence tomography

    Full text link
    We report experimental evidence and correction of defocus in full-field OCT of biological samples due to mismatch of the refractive index of biological tissues and water. Via a metric based on the image quality, we demonstrate that we are able to compensate this index-induced defocus and to recover a sharp image in depth.Comment: 7 pages, 3 figures, minor changes, 1 figure adde

    Interstudy reproducibility of the second generation, Fourier domain optical coherence tomography in patients with coronary artery disease and comparison with intravascular ultrasound: a study applying automated contour detection

    Get PDF
    Recently, Fourier domain OCT (FD-OCT) has been introduced for clinical use. This approach allows in vivo, high resolution (15 micron) imaging with very fast data acquisition, however, it requires brief flushing of the lumen during imaging. The reproducibility of such fast data acquisition under intracoronary flush application is poorly understood. To assess the inter-study variability of FD-OCT and to compare lumen morphometry to the established invasive imaging method, IVUS. 18 consecutive patients with coronary artery disease scheduled for PCI were included. In each target vessel a FD-OCT pullback (MGH system, light source 1,310 nm, 105 fps, pullback speed 20 mm/s) was acquired during brief (3 s) injection of X-ray contrast (flow 3 ml/s) through the guiding catheter. A second pullback was repeated under the same conditions after re-introduction of the FD OCT catheter into the coronary artery. IVUS and OCT imaging was performed in random order. FD-OCT and IVUS pullback data were analyzed using a recently developed software employing semi automated lumen contour and stent strut detection algorithms. Corresponding ROI were matched based on anatomical landmarks such as side branches and/or stent edges. Inter-study variability is presented as the absolute difference between the two pullbacks. FD-OCT showed remarkably good reproducibility. Inter-study variability in native vessels (cohort A) was very low for mean and minimal luminal area (0.10 ± 0.38, 0.19 ± 0.57 mm[superscript 2], respectively). Likewise inter-study variability was very low in stented coronary segments (cohort B) for mean lumen, mean stent, minimal luminal and minimal stent area (0.06 ± 0.08, 0.07 ± 0.10, 0.04 ± 0.09, 0.04 ± 0.10 mm[superscript 2], respectively). Comparison to IVUS morphometry revealed no significant differences. The differences between both imaging methods, OCT and IVUS, were very low for mean lumen, mean stent, minimal luminal and minimal stent area (0.10 ± 0.45, 0.10 ± 0.36, 0.26 ± 0.54, 0.05 ± 0.47 mm[superscript 2], respectively). FD-OCT shows excellent reproducibility and very low inter-study variability in both, native and stented coronary segments. No significant differences in quantitative lumen morphometry were observed between FD-OCT and IVUS. Evaluating these results suggest that FD-OCT is a reliable imaging tool to apply in longitudinal coronary artery disease studie

    Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation

    Get PDF
    We demonstrate a novel high-speed polarization-sensitive optical frequency domain imaging system employing high-speed polarization modulation. Rapid and continuous polarization modulation of light prior to illumination of the sample is accomplished by shifting the frequency of one polarization eigenstate by an amount equal to one quarter of the digitization sampling frequency. This approach enables polarizationsensitive imaging with a single detection channel and overcomes artifacts that may arise from temporal variations of the birefringence in fiber-optic imaging probes and spatial variation of birefringence in the sample. © In conventional fiber-optic PS-OCT, polarizationdiverse detection and polarization modulation are implemented to measure birefringence properties of the tissue sample. Polarization-diverse detection determines Stokes vector components of the light reflected from each depth of the tissue by measuring projections onto a pair of orthogonal polarization states through a polarization beam splitter (PBS) and two detection channels. Since two input polarization states perpendicular to each other on the Poincaré sphere are required for the determination of the optic axis and phase retardation in the tissue with any arbitrary static birefringence of the sample arm optical fiber, the polarization state of the light incident on the sample is modulated between two perpendicular states on the Poincaré sphere on successive axial scans (A-lines) However, in high-speed intracoronary imaging through a rapidly spinning catheter, birefringence images are prone to artifacts that can arise from rapid stress-induced birefringence changes in the fiber-optic catheter that occur during the time interval between successive A-lines In the OFDI with high-speed polarization modulation scheme

    Paclitaxel Drug-Coated Balloon Angioplasty Suppresses Progression and Inflammation of Experimental Atherosclerosis in Rabbits

    Get PDF
    Paclitaxel drug-coated balloons (DCBs) reduce restenosis, but their overall safety has recently raised concerns. This study hypothesized that DCBs could lessen inflammation and reduce plaque progression. Using 25 rabbits with cholesterol feeding- and balloon injury-induced lesions, DCB-percutaneous transluminal angioplasty (PTA), plain PTA, or sham-PTA (balloon insertion without inflation) was investigated using serial intravascular near-infrared fluorescence−optical coherence tomography and serial intravascular ultrasound. In these experiments, DCB-PTA reduced inflammation and plaque burden in nonobstructive lesions compared with PTA or sham-PTA. These findings indicated the potential for DCBs to serve safely as regional anti-atherosclerosis therapy

    High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe

    Get PDF
    Optical coherence microscopy (OCM) is a promising technique for high resolution cellular imaging in human tissues. An OCM system for high-speed en face cellular resolution imaging was developed at 1060 nm wavelength at frame rates up to 5 Hz with resolutions of < 4 µm axial and < 2 µm transverse. The system utilized a novel polarization compensation method to combat wavelength dependent source polarization and achieve broadband electro-optic phase modulation compatible with ultrahigh axial resolution. In addition, the system incorporated an auto-focusing feature that enables precise, near real-time alignment of the confocal and coherence gates in tissue, allowing user-friendly optimization of image quality during the imaging procedure. Ex vivo cellular images of human esophagus, colon, and cervix as well as in vivo results from human skin are presented. Finally, the system design is demonstrated with a miniaturized piezoelectric fiber-scanning probe which can be adapted for laparoscopic and endoscopic imaging applications.National Institutes of Health (U.S.) (R01-CA75289-13)National Institutes of Health (U.S.) R01-EY11289-25United States. Air Force Office of Scientific Research (FA9550-07-1-0101)United States. Air Force Office of Scientific Research (FA9550-07-1-0014)Max Planck Society for the Advancement of ScienceNational Institutes of Health (U.S.) (Fellowship) (F31 EB005978

    Method for Quantitative Study of Airway Functional Microanatomy Using Micro-Optical Coherence Tomography

    Get PDF
    We demonstrate the use of a high resolution form of optical coherence tomography, termed micro-OCT (μOCT), for investigating the functional microanatomy of airway epithelia. μOCT captures several key parameters governing the function of the airway surface (airway surface liquid depth, periciliary liquid depth, ciliary function including beat frequency, and mucociliary transport rate) from the same series of images and without exogenous particles or labels, enabling non-invasive study of dynamic phenomena. Additionally, the high resolution of μOCT reveals distinguishable phases of the ciliary stroke pattern and glandular extrusion. Images and functional measurements from primary human bronchial epithelial cell cultures and excised tissue are presented and compared with measurements using existing gold standard methods. Active secretion from mucus glands in tissue, a key parameter of epithelial function, was also observed and quantified
    corecore